Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns

Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patte...

متن کامل

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Local Temporal Correlation Common Spatial Patterns for Single Trial EEG Classification during Motor Imagery

Common spatial pattern (CSP) is one of the most popular and effective feature extraction methods for motor imagery-based brain-computer interface (BCI), but the inherent drawback of CSP is that the estimation of the covariance matrices is sensitive to noise. In this work, local temporal correlation (LTC) information was introduced to further improve the covariance matrices estimation (LTCCSP). ...

متن کامل

Motor Imagery Based Eeg Signal Classification Using Self Organizing Maps

MOTOR IMAGERY BASED EEG SIGNAL CLASSIFICATION USING SELF ORGANIZING MAPS *Muhammad Zeeshan Baig, Yasar Ayaz National University of Science and Technology Islamabad, Pakistan *Contact: [email protected] ABSTRACT: Classification of Motor Imagery (MI) tasks based EEG signals effectively is the main hurdle in order to develop online Brain Computer interface (BCI). In this research article, a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2016

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2016/1489692